

Simulation of the Flood Warning Process with Competency-based Description of Human Resources

Štěpán KuchařMichal Podhorányi
Jan Martinovič
Ivo Vondrák

stepan.kuchar@vsb.cz

VSB-TU Ostrava, IT4Innovations Czech Republic

Flood Prediction Motivation

- Floods represent major problem in many regions around the world
- Czech Republic has been hit by a growing number of floods over past years
- It is important to specify and optimize the flood warning process to minimize the flood impact
- Simulations can help identify bottlenecks in the process caused by wrong workflow structure and also by wrong allocation of human resources

Flood Warning Process

Flood Warning Stage

► Flood Response Stage

Institute of Hydrometeorology

Local Catchment Area Offices

Actual river and reservoir situation	Rainfall-Runoff modelling
Hydrodynamic modelling	Erosion modelling

Data collection and archivation

Police

Fire & Rescue Services

Ambulance & Medical Services

Emergency Coordinator

The BPM Method

- Modelling and simulation method for business processes
- Provides discrete event simulation environment with stochastic properties and generic resource sharing
- Defines three basic process models:
 - Architecture of the process
 - Objects and resources utilized in the process
 - Behaviour of the process most important for simulations

Coordination Diagram

Visual representation of the behaviour model

Human Resource Competencies

- Description of human resources is provided by
 - Competency models
 - Skills frameworks
- Competencies are defined as sets of knowledge, abilities, skills and behavior that contribute to successful job performance and the achievement of organizational results.
- Skills frameworks describe specific skills for one domain rather then general competencies

Competency Models

- Describe "How to measure and evaluate" individual competencies
- Measured by a number of advancing stages
- Higher levels of competency include all lower levels
- First historical competency model was specified by five levels
- There is no standard for how many levels should a competency model have

Competency Levels Example

 A few competencies that one of the Hydrology Specialists in the flood warning process could have (on a 5-level scale):

Competency	Level
Catchment area of the Odra river	4 th level
Catchment area of the Opava river	1 st level
Rainfall-runoff modelling	2 nd level
Hydrology analysis	3 rd level
Communication	2 nd level

Competency-based Activity Requirements

- Describe what competencies should the human resource performing this activity know
- Simple requirements for the activity of analysing results of hydrology models

Competency	Level
Catchment area	3 rd level
Hydrology analysis	3 rd level
Cartography	2 nd to 3 rd level
Statistics	2 nd to 4 th level

Competency Description Integration

- BPM Method is an object-oriented method
- Competency-based description was introduced into the method by expanding object definitions of simulated objects
- Resource competency extension
 - Set of competencies and their levels for each resource
- Competency parameters extension
 - Each process instance defines multiple parameter sets and process case priorities with different probabilities
 - e.g. 20% Opava catchment, 80% Odra catchment

Competency Description Integration

- Activity requirements extension
 - Set of required competencies and their requirement limits for each shared input resource of each activity
 - Importance of each competency requirement
- Competency-based resource evaluation
 - Activity with requirements needs to start => suitable resources are evaluated from all available resources
 - Competencies are encoded to vectors and evaluated in the vector space model
 - Resources with better results than the referential user are suitable to perform the activity and sorted by skills

Resource Utilization and Unavailability

- Utilization total time when resource is performing any activity
 - not very useful for optimizing resources
- Waiting time time when resource is performing an activity and another activity needs the resource
 - very useful in optimizing resources minimalization of waiting times by adding more resources – raises the process cost

Case Study

- Flood warning process of the Moravian-Silesian region, Czech Republic
- Focus on the flood warning and forecast stage
- 1 Hydrology manager, 5 Hydrology specialists,
 2 Hydrology analysts, 2 Database specialist
- 20 competencies, 10 competency levels,
 5 parameters (major catchment areas)
- 200 simulations for each configuration to mitigate unpredictability of stochastic properties

Case Study Utilization

Total process duration – 9 hours 44 minutes

Case Study Improvement

- Database specialist 2 removed
 - Utilization is scattered through the whole process
- Analysts can not be removed because they complement each other with their skills
- 2nd specialist's waiting times are caused by one activity – Calibration of the hydrodynamic model
 - 4th specialist is only slightly unsuitable for this activity (36% suitability to 39% required)
 - Training this specialist 1 level in either Hydrodynamic modelling or Hydrodynamic calibration is enough

Case Study Improvement

- By training the 5th specialist in one competency, he can also help with some activities
- Duration after improvements 8 hours 11 minutes

Conclusion

- Simulations extended with the competencybased specification of resources can be used to support management and training decisions
- Final duration of the process can be further improved by hiring new specialists
 - Hiring one specialist shortens the duration by additional 37 minutes
 - Hiring two specialists by 50 minutes
- Suitability can be also used to influence the performance of the resource

Thank You for Your Attention